Refine Your Search

Topic

Author

Search Results

Technical Paper

Effects of Timing and Odd/Even Number of Teeth on Noise Generation of Gerotor Lubricating Pumps for IC Engines

2000-09-11
2000-01-2630
The paper presents experimental and theoretical investigations on a shaft mounted gerotor lubricating pump aimed at reducing radiated noise at high engine speed. Effects of noise generation identified as main sources are the fluid borne noise (FBN) that originates in unsteady flow and related pressure fluctuations and structure borne noise (SBN) as a result of pressure transients occurring internally, which cause vibrations of the pump case. To clarify the onset of large delivery pressure fluctuations detected at high pump speed (in excess of 4000 rpm), and validate simulation results (AMESim environment), experimental and theoretical studies have been performed.
Technical Paper

Effective Vehicle Sideslip Angle Estimation using DVS Technology

2014-04-01
2014-01-0084
The vehicle sideslip angle is one of the most important variables for evaluating vehicle dynamics. The potential value of such a variable for obtaining significant improvements over current stability control systems is widely recognized. However, its direct measurement requires the use of complex and expensive devices which cannot be used in production cars. Large research efforts has been devoted to the problem of estimating the sideslip angle from other variables currently measured by standard Electronic Stability Control (ESC) sensors. However, at the best of author's knowledge, until now no application to production cars is known. In this paper, a new sideslip angle estimation technology is presented.
Technical Paper

Effect of Compression Ratio and Injection Pressure on Emissions and Fuel Consumption of a Small Displacement Common Rail Diesel Engine

2005-04-11
2005-01-0379
The effect of variations of compression ratio (CR) and injection pressure (IP) on the emissions and performance of a small displacement common rail off-road diesel engine was evaluated. The operating point corresponding to the 5th mode of the ISO 8178 - C1 test cycle (intermediate speed / full load) was considered, since it represents one of the most critical operating conditions as far as exhaust emissions are concerned. The main effect of a reduction of the compression ratio, for a fixed injection timing, was found to be, as expected, an increase in NOx emissions along with a decrease of PM emissions, with a substantial redefinition of the PM-NOx trade-off curve; the choice of a proper value for the start of injection can therefore lead to a better compromise among pollutant emissions, although remarkable variations in BSFC and combustion noise must be taken into account.
Technical Paper

Dual-Mass Flywheel with Torque Limiter: An Effective Solution for Overtorque Suppression in Automotive Transmission

2020-04-14
2020-01-1016
During some critical maneuvers, transmission systems using Dual Mass Flywheel (DMF) may experience overtorques, which could lead to structural damages of the transmission components. In a dual mass flywheel, total inertia is divided into two parts: a primary mass connected to the engine and a secondary mass to the transmission. The torque delivered by the engine is transferred from one mass to the other through a drive plate and a set of arc springs, the latter absorbing the torsional oscillations coming from internal combustion engine and the shocks caused by fast clutch engagements. This paper investigates overtorque issues and proposes a solution based on a torque limiter, consisting of a friction clutch inserted between the two masses, that limits the maximum torque transmitted through it. The basic idea is to replace the classic flat drive plate with a tapered drive plate that functions as a Belleville spring.
Technical Paper

Dual Clutch Transmission Vibrations during Gear Shift: A Simulation-Based Approach for Clunking Noise Assessment

2019-06-05
2019-01-1553
A novel methodology, for the assessment of Dual Clutch Transmission vibrations during gear shifts, is proposed in this paper. It is based on the capability to predict through numerical simulation a typical dynamic quantity used to objectively evaluate the vibrational behavior of a gearbox during experimental tests, i.e. the acceleration of a point on the external surface of the gearbox housing. To achieve this result, a two-step approach is proposed: an accurate simulation of the internal transmission dynamics and an offline uncoupled computation of the gearbox housing acceleration from the output of the simulation. The first step required the definition of a suitable nonlinear lumped parameter model of the car equipped with a DCT that was implemented in Amesim software.
Journal Article

Driving Cycle and Elasticity Manoeuvres Simulation of a Small SUV Featuring an Electrically Boosted 1.0 L Gasoline Engine

2019-09-09
2019-24-0070
In order to meet the CO2 emission reduction targets, downsizing coupled with turbocharging has been proven as an effective way in reducing CO2 emissions while maintaining and improving vehicle driveability. As the downsizing becomes widely exploited, the increased boost levels entail the exploration of dual stage boosting systems. In a context of increasing electrification, the usage of electrified boosting systems can be effective in the improvement of vehicle performances. The aim of this work is therefore to evaluate, through numerical simulation, the impact of different voltage (12 V or 48 V) electric superchargers (eSC) on an extremely downsized 1.0L engine on vehicle performance and fuel consumption over different transient manoeuvres.
Technical Paper

Digital Shaping and Optimization of Fuel Injection Pattern for a Common Rail Automotive Diesel Engine through Numerical Simulation

2017-09-04
2017-24-0025
Development trends in modern Common Rail Fuel Injection System (FIS) show dramatically increasing capabilities in terms of optimization of the fuel injection pattern through a constantly increasing number of injection events per engine cycle along with a modulation and shaping of the injection rate. In order to fully exploit the potential of the abovementioned fuel injection pattern optimization, numerical simulation can play a fundamental role by allowing the creation of a kind of a virtual injection rate generator for the assessment of the corresponding engine outputs in terms of combustion characteristics such as burn rate, emission formation and combustion noise (CN). This paper is focused on the analysis of the effects of digitalization of pilot events in the injection pattern on Brake Specific Fuel Consumption (BSFC), CN and emissions for a EURO 6 passenger car 4-cylinder diesel engine.
Technical Paper

Development of a Numerical Methodology for the Assessment of Flow Noise in Complex Engine Exhaust Systems

2021-08-31
2021-01-1043
Worldwide regulations concerning noise emissions of road vehicles are constantly demanding further reductions of acoustic emissions, which are considered a major environmental health concern in several countries. Among the different sources contributing to noise generation in vehicles equipped with internal combustion engines, exhaust flow noise is one of the most significant, being generated by turbulence development in the exhaust gases, and robust and reliable numerical methodologies for its prediction in early design phases are currently still needed. To this extent, Computational Aero-Acoustics (CAA) can be considered a valuable approach to characterize the physical mechanisms leading to flow noise generation and its propagation, and it could therefore be used to support exhaust system development prior to the execution of experimental testing campaigns.
Journal Article

Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation

2017-09-04
2017-24-0152
Natural gas is a promising alternative fuel for internal combustion engine application due to its low carbon content and high knock resistance. Performance of natural gas engines is further improved if direct injection, high turbocharger boost level, and variable valve actuation (VVA) are adopted. Also, relevant efficiency benefits can be obtained through downsizing. However, mixture quality resulting from direct gas injection has proven to be problematic. This work aims at developing a mono-fuel small-displacement turbocharged compressed natural gas engine with side-mounted direct injector and advanced VVA system. An injector configuration was designed in order to enhance the overall engine tumble and thus overcome low penetration.
Technical Paper

Design, Construction and Experimental Testing of an High Efficiency Continuously Variable Transmission

2009-04-20
2009-01-1542
The design, the construction and the experimental characterization of a Continuously Variable Transmission (CVT) based on the rolling contact between conical bodies are analyzed. The studied CVT has been developed in order to allow a wide ratio range (up to 9), high torque capability (up to 500 Nm) and compactness. The main design problems and related solutions are explained focusing on the following aspects: contact area optimization, modular approach and development of different CVT versions to meet the current powertrain market needs. A total mechanical efficiency from 82% to 91% has been measured through experimental testing on a prototype.
Technical Paper

Design of a Decentralized Control Strategy for CACC Systems accounting for Uncertainties

2024-06-12
2024-37-0010
Traditional CACC systems utilize inter-vehicle wireless communication to maintain minimal yet safe inter-vehicle distances, thereby improving traffic efficiency. However, introducing communication delays generates system uncertainties that jeopardize string stability, a crucial requirement for robust CACC performance. To address these issues, we introduce a decentralized Model Predictive Control (MPC) approach that incorporates Kalman Filters and state predictors to counteract the uncertainties posed by noise and communication delays. We validate our approach through MATLAB Simulink simulations, using stochastic and mathematical models to capture vehicular dynamics, Wi-Fi communication errors, and sensor noises. In addition, we explore the application of a Reinforcement Learning (RL)-based algorithm to compare its merits and limitations against our decentralized MPC controller, considering factors like feasibility and reliability.
Journal Article

Computational Analysis of Internal and External EGR Strategies Combined with Miller Cycle Concept for a Two Stage Turbocharged Medium Speed Marine Diesel Engine

2011-04-12
2011-01-1142
In this work different internal and external EGR strategies, combined with extreme Miller cycles, were analyzed by means of a one-dimensional CFD simulation code for a Wärtsilä 6-cylinder, 4-strokes, medium-speed marine diesel engine, to evaluate their potential in order to reach the IMO Tier 3 NOx emissions target. By means of extreme Miller cycles, with Early Intake Valve Closures (up to 100 crank angle degrees before BDC), a shorter compression stroke and lower charge temperatures inside the cylinder can be achieved and thanks to the cooler combustion process, the NOx-specific emissions can be effectively reduced. EIVC strategies can also be combined with reductions of the scavenging period (valve overlap) to increase the amount of exhaust gases in the combustion chamber. However, the remarkably high boost pressure levels needed for such extreme Miller cycles, require mandatorily the use of two-stage turbocharging systems.
Technical Paper

Common Rail without Accumulator: Development, Theoretical-Experimental Analysis and Performance Enhancement at DI-HCCI Level of a New Generation FIS

2007-04-16
2007-01-1258
An innovative hydraulic layout for Common Rail (C.R.) fuel injection systems was proposed and realized. The rail was replaced by a high-pressure pipe junction to have faster dynamic system response during engine transients, smaller pressure induced stresses and sensibly reduced production costs. Compared to a commercial rail, whose inside volume ranges from 20 to 40 cm3, such a junction provided a hydraulic capacitance of about 2 cm3 and had the main function of connecting the pump delivery to the electroinjector feeding pipes. In the design of the novel FIS layout, the choice of high-pressure pipe dimensions was critical for system performance optimization. Injector supplying pipes with length and inner diameter out of the actual production range were selected and applied, for stabilizing the system pressure level during an injection event and reduce pressure wave oscillations.
Journal Article

Combustion System Optimization of a Low Compression-Ratio PCCI Diesel Engine for Light-Duty Application

2009-04-20
2009-01-1464
A new combustion system with a low compression ratio (CR), specifically oriented towards the exploitment of partially Premixed Charge Compression Ignition (PCCI) diesel engines, has been developed and tested. The work is part of a cooperative research program between Politecnico di Torino (PT) and GM Powertrain Europe (GMPT-E) in the frame of Low Temperature Combustion (LTC) diesel combustion-system design and control. The baseline engine is derived from the GM 2.0L 4-cylinder in-line, 4-valve-per-cylinder EU5 engine. It features a CR of 16.5, a single stage VGT turbocharger and a second generation Common Rail (1600 bar). A newly designed combustion bowl was applied. It features a central dome and a large inlet diameter, in order to maximize the air utilization factor at high load and to tolerate advanced injection timings at partial load. Two different piston prototypes were manufactured by changing the internal volume of the new bowl so as to reach CR targets of 15.5 and 15.
Technical Paper

CFD Analysis of Fuel Cell Humidification System for Automotive Application

2023-04-11
2023-01-0493
Fuel cells are considered one of the promising technologies as possible replacement of Internal Combustion Engine (ICE) for the transportation sector due to their high efficiency, ultra-low (or zero) emissions and for the higher drive range. The Membrane Electrode Assembly (MEA) is what mainly influences the Fuel Cell FC performance, durability, and cost. In PEMFC the proton conductivity of the membrane is a function of the humidification level of the FC membrane, hence the importance of keeping the membrane properly humidified to achieve the best possible fuel cell performance. To have the optimal water content inside the fuel cell’s membrane several strategies could be adopted, dealing with the use of external device (such as membrane humidifier) or to adopt an optimal set of parameters (gas flow rate and temperature for example) to use the water produced at fuel cell cathode as humidity source. The aim of this paper is to study the behavior of a FC vehicle humidification system.
Technical Paper

Assessment through Numerical Simulation of the Impact of a 48 V Electric Supercharger on Performance and CO2 Emissions of a Gasoline Passenger Car

2019-04-02
2019-01-1284
The demanding CO2 emission targets are fostering the development of downsized, turbocharged and electrified engines. In this context, the need for high boost level at low engine speed requires the exploration of dual stage boosting systems. At the same time, the increased electrification level of the vehicles enables the usage of electrified boosting systems aiming to exploit the opportunities of high levels of electric power and energy available on-board. The aim of this work is therefore to evaluate, through numerical simulation, the impact of a 48 V electric supercharger (eSC) on vehicle performance and fuel consumption over different transients. The virtual test rig employed for the analysis integrates a 1D CFD fast running engine model representative of a 1.5 L state-of-the-art gasoline engine featuring an eSC in series with the main turbocharger, a dual voltage electric network (12 V + 48 V), a six-speed manual transmission and a vehicle representative of a B-SUV segment car.
Technical Paper

Assessment of Flow Noise Mitigation Potential of a Complex Aftertreatment System through a Hybrid Computational Aeroacoustics Methodology

2021-09-05
2021-24-0091
Flow noise produced by the turbulent motion of the exhaust gases is one of the main contributions to the noise generation for a heavy-duty vehicle. The exhaust system has therefore to be optimized since the early stages of the design to improve the engine’s Noise Vibration Harshness (NVH) performance and to comply with legislation noise limits. In this context, the availability of reliable Computational Aero-Acoustics (CAA) methodologies is crucial to assess the noise mitigation potential of different exhaust system designs. In the present work, a characterization of the sound generation in a heavy-duty exhaust system was carried out evaluating the noise attenuation potential of a design modification, by means of a hybrid CAA methodology.
Journal Article

Artificial Intelligence for Damage Detection in Automotive Composite Parts: A Use Case

2021-04-06
2021-01-0366
The detection and evaluation of damage in composite materials components is one of the main concerns for automotive engineers. It is acknowledged that defects appeared in the manufacturing stage or due to the impact and/or fatigue loads can develop along the vehicle riding. To avoid an unexpected failure of structural components, engineers ask for cheap methodologies assessing the health state of composite parts by means of continuous monitoring. Non Destructive Technique (NDT) for the damage assessment of composite structures are nowadays common and accurate, but an on-line monitoring requires properties as low cost, small size and low power that do not belong to common NDT. The presence of a damage in composite materials, either due to fatigue cycling or low-energy impact, leads to progressive degradation of elastic moduli and strengths.
Journal Article

An Unsupervised Machine-Learning Technique for the Definition of a Rule-Based Control Strategy in a Complex HEV

2016-04-05
2016-01-1243
An unsupervised machine-learning technique, aimed at the identification of the optimal rule-based control strategy, has been developed for parallel hybrid electric vehicles that feature a torque-coupling (TC) device, a speed-coupling (SC) device or a dual-mode system, which is able to realize both actions. The approach is based on the preliminary identification of the optimal control strategy, which is carried out by means of a benchmark optimizer, based on the deterministic dynamic programming technique, for different driving scenarios. The optimization is carried out by selecting the optimal values of the control variables (i.e., transmission gear and power flow) in order to minimize fuel consumption, while taking into account several constraints in terms of NOx emissions, battery state of charge and battery life consumption.
Journal Article

Accelerated Sizing of a Power Split Electrified Powertrain

2020-04-14
2020-01-0843
Component sizing generally represents a demanding and time-consuming task in the development process of electrified powertrains. A couple of processes are available in literature for sizing the hybrid electric vehicle (HEV) components. These processes employ either time-consuming global optimization techniques like dynamic programming (DP) or near-optimal techniques that require iterative and uncertain tuning of evaluation parameters like the Pontryagin’s minimum principle (PMP). Recently, a novel near-optimal technique has been devised for rapidly predicting the optimal fuel economy benchmark of design options for electrified powertrains. This method, named slope-weighted energy-based rapid control analysis (SERCA), has been demonstrated producing results comparable to DP, while limiting the associated computational time by near two orders of magnitude.
X